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Abstract
We apply the method of infrared bounds with the technique of Kennedy,
Lieb and Shastry to the isotropic spin-1 Hamiltonian with bilinear (−J )
and biquadratic (−J ′) exchange interactions to examine the existence of
antiferro-dipole long-range order (DLRO) and ferro-quadrupole long-range
order (QLRO). We prove that DLRO exists at zero temperature in two and
three dimensions for 0 � J ′ < −0.188J and 0 � J ′ < −1.954J , respectively.
In three dimensions we also prove the existence of QLRO in the ground state
for 0 < 2J � J ′ < 2.664J .

PACS number: 75.50.-y

1. Introduction

In various materials it has been recognized that quadrupole interactions induce quadrupole
phase transitions; for example, PrCu2 and CeAg are known to exhibit ferro-quadrupole (FQ)
ordering (the cooperative Jahn–Teller phase transition) [1, 2] and CeB6 and PrPb3 antiferro-
quadrupole ordering [3–5]. A variety of theoretical models have been proposed to study the
nature of quadrupole systems [3, 4, 6–8]. One of the simplest models is described by the
S = 1 Hamiltonian, which contains the isotropic biquadratic interaction in addition to the
usual Heisenberg (bilinear) interaction:

H = −J
∑
〈i,j〉

S(i) · S(j) − J ′ ∑
〈i,j〉

(S(i) · S(j))2. (1)

In this paper we are concerned with Hamiltonian (1) on the hypercubic lattice, and in particular
we investigate the existence of long-range order (LRO) in the ground state of this Hamiltonian.

In the case of one dimension, Hamiltonian (1) has been studied extensively following
the Haldane conjecture. There are a number of theoretical, numerical and experimental
works, and even a few rigorous results. The ground-state phase diagram expected to
be valid in one dimension is summarized as follows. The region −π/4 < θ < π/4
(−J/

√
J 2 + J ′2 = cos θ,−J ′/

√
J 2 + J ′2 = sin θ) is the Haldane phase, π/4 < θ < π/2
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the massless phase, π/2 < θ < 5π/4 the ferromagnetic phase and 5π/4 < θ < 7π/4 the
dimer phase. (See, e.g., [9–12] and references therein.)

On the other hand, in two or more dimensions, the phase diagram of the ground state of
Hamiltonian (1) has not yet been understood sufficiently, except the region π/2 < θ < 5π/4,
in which the ground state is proved to be ferromagnetic [13]. The models have been studied
mostly by using approximation methods such as a molecular field theory, a spin wave theory
and a high-temperature series expansion [14–20]. According to these approximation theories,
the region −π/2 < θ < 0 is the antiferromagnetic (AF) phase, −3π/4 < θ < −π/2 the ferro-
quadrupole phase and 0 < θ < π/2 is expected to be the antiferro-quadrupole or the canted
antiferromagnetic phase. Recently, Harada and Kawashima investigated the ground state of
the two-dimensional system for −π � θ � 0 by quantum Monte Carlo simulation [21]. Their
results also suggested that the region −π/2 < θ � 0 is the antiferromagnetic phase and that
there is neither magnetization nor staggered magnetization for −3π/4 < θ < −π/2. It is
to be noted that there has been no rigorous result about the existence of the phase or LRO
predicted by approximation and numerical methods.

In the present paper we focus our attention on the region −3π/4 � θ � 0(θ �= −π/2),
which corresponds to J ′ � J, J ′ � 0(J �= 0). In this region, as mentioned above, it is
expected that antiferro-dipole long-range order (DLRO) or ferro-quadrupole long-range order
(QLRO) exists in two or more dimensions.

Our purpose is to establish the existence of LRO in the infinite system; but here it is worth
noting the rigorous results in the finite systems. When the system size is finite and the number
of sites is even, by using the Marshall–Lieb–Mattis argument, it is proved that the ground state
of Hamiltonian (1) in the region J ′ > J, J ′ � 0(J �= 0) is unique [22–24]. For J < 0, J ′ � 0
the unique ground state satisfies the so-called Marshall sign rule. It is also known that the
antiferro-dipole correlation function for this ground state is bounded away from zero. (It is
noted that this fact does not mean the existence of DLRO in the infinite systems.) On the other
hand, for J ′ > J > 0 the unique ground state satisfies the ‘Parkinson sign rule’. It is known
that the ferro-quadrupole correlation function for this ground state is bounded away from zero.
We should note that the bilinear term is ferromagnetic in the region J ′ > J > 0. The strong
quantum fluctuation induced by the biquadratic term stabilizes the spin singlet state. In the
case of one dimension it is expected that the translation invariance is spontaneously broken
in the infinite-volume limit. We think that in two or more dimensions whether QLRO exists
or not for J ′ > J > 0 is not at all trivial. It is desirable to confirm the existence of QLRO
rigorously.

For the usual d-dimensional spin-S antiferromagnetic Heisenberg model (J < 0, J ′ = 0
in our Hamiltonian (1)), the existence of DLRO can be proved by using the method of
infrared bounds. Dyson, Lieb and Simon (DLS) proved that DLRO exists at sufficiently low
temperatures if d � 3 and S � 1 [25]. By applying the technique of DLS, Jardão Neves and
Fernando Perez proved the existence of DLRO in the ground state for d = 2 and S � 1 [26,27].
Kennedy, Lieb and Shastry (KLS) improved the technique of DLS and proved the existence
of DLRO in the ground state for d = 3 and S = 1/2 [28].

In classical cases where S(x) in Hamiltonian (1) is a classical vector, there are some
rigorous results on the existence of dipole LRO and quadrupole LRO at finite temperatures. In
this case Hamiltonian (1) is related to a model of the nematic phase transitions in liquid crystals.
With the method of infrared bounds, Angelescu and Zagrebnov proved the existence of the
nematic (ferro-quadrupole) phase transition at low temperatures for a lattice-gas version of the
purely nematogenic model (J = 0, J ′ > 0) in three or more dimensions [29] (see also [30]
and [31], in which the purely nematogenic lattice-gas models with long-range interactions are
discussed). For J > 0, J ′ > 0 Tanaka and Idogaki and Campbell and Chayes proved the
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existence of ferro-dipole LRO and ferro-quadrupole LRO at low temperatures in three or more
dimensions [32, 33]. They also established that there is an intermediate-temperature region
where ferro-quadrupole LRO exists but ferro-dipole LRO does not.

The method of infrared bounds can be applied to spin systems satisfying so-called
reflection positivity. In this paper we show that Hamiltonian (1) satisfies reflection positivity
for J ′ � 0, J ′ � 2J , and following the paper of KLS [28] we prove that, for a restricted
parameter region within J ′ � 0, J ′ � 2J , DLRO exists in the ground state of Hamiltonian (1)
in two and three dimensions. We further extend the proof to the case of QLRO and examine
its existence.

This paper is organized as follows. In section 2, we introduce some notation used
throughout this paper. In sections 3 and 4, by using the method of infrared bounds with
the KLS technique, we prove the existence of DLRO and QLRO, respectively, in the ground
state of Hamiltonian (1). In section 5, we summarize and discuss the results of sections 3
and 4.

2. Definition and notation

We start with the definition of the model. Consider a d-dimensional hypercubic lattice� ⊂ Zd

of the form

� = {x = (x1, . . . , xd)| − L + 1 � xi � L} (2)

where L is an integer. We impose periodic boundary conditions in all directions. With each
site x ∈ �, we associate the S = 1 operator S(x). In this paper we use the usual matrix
representation

S1 = 1√
2

( 0 1 0
1 0 1
0 1 0

)
S2 = 1√

2

( 0 −i 0
i 0 −i
0 i 0

)
S3 =

( 1 0 0
0 0 0
0 0 −1

)
. (3)

We define the isotropic bilinear–biquadratic exchange Hamiltonian as follows:

H� = −J
∑
〈x,y〉

S(x) · S(y) − J ′ ∑
〈x,y〉

(S(x) · S(y))2 (4)

where the summation is over all nearest-neighbour pairs 〈x, y〉 in �. The parameters J and
J ′ are restricted to J ′ � 0, J ′ � 2J (J �= 0), where we can use the method of infrared bounds
in the paper of KLS. The reason for this restriction will become clear in the next section.

For subsequent discussion, it is convenient to rewrite H� in terms of the Racah operators
Okq , which are defined by

O10(x) = S3(x) (5)

O1±1(x) = ∓
√

1
2

1
2

(
S±(x) + S±(x)

)
(6)

O20(x) = 1
2

[
3S2

3 (x) − S(S + 1)
]

(7)

O2±1(x) = ∓
√

3
2

1
2

(
S3(x)S

±(x) + S±(x)S3(x)
)

(8)

O2±2(x) =
√

3
8

(
S±(x)

)2
(9)

for k = 1, 2 and |q| � k [34], where S+(x) and S−(x) are the usual spin raising and lowering
operators defined by

S±(x) = S1(x) ± iS2(x). (10)
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The Racah operators satisfy the relations

O
†
kq(x) = (−1)qOk−q(x) (11)

1∑
q=−1

O1q(x)O
†
1q(y) = S(x) · S(y) (12)

2∑
q=−2

O2q(x)O
†
2q(y) = 3

2 (S(x) · S(y))2 + 3
4S(x) · S(y) − 1

2S
2(S + 1)2 (13)

and the commutation relation,[
S3(x),Okq(x)

] = qOkq(x). (14)

By using equations (12) and (13), Hamiltonian (4) can be written as

H� = JDH�D − JQH�Q (15)

with

JD = −J + 1
2J

′ JQ = 2
3J

′ (16)

H�D =
∑
〈x,y〉

1∑
q=−1

O1q(x)O
†
1q(y) (17)

H�Q =
∑
〈x,y〉

2∑
q=−2

O2q(x)O
†
2q(y) (18)

where we have omitted a constant term. From J ′ � 0, J ′ � 2J , the parameters JD and JQ are
restricted to JD � 0, JQ � 0.

We define a DLRO parameter and a QLRO parameter in the ground state of H� by

m2
D = lim

�→∞

〈[
1

|�|
∑
x∈�

(−1)xS3(x)

]2〉
�

(19)

and

m2
Q = lim

�→∞

〈(
1

|�|
∑
x∈�

O20(x)

)2〉
�

(20)

respectively, where |�| is the number of sites in � and 〈X〉� denotes an expectation value of
X for the ground state.

3. Dipole long-range order

In this section, we prove the existence of DLRO, i.e. m2
D > 0 within the region J < 0 and

J ′ � 0 (0 � JQ < 4JD/3).
Let us define the Fourier transform of S3(x) by

S3(k) = 1√|�|
∑
x∈�

e−ik·xS3(x) (21)

where k = (k1, . . . , kd) is in a reciprocal lattice �∗. The Fourier transform of the two-point
correlation function in the ground state is written as

gD(k) = 〈S3(k)S3(−k)〉�. (22)
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Let us define the dipole interaction energy and the quadrupole interaction energy per site by

e�D = −〈H�D〉�
|�| eD = lim

�→∞
e�D (23)

and

e�Q = 〈H�Q〉�
|�| eQ = lim

�→∞
e�Q (24)

respectively. By using the sum rule

1

|�|
∑
k∈�∗

gD(k)
1

d

d∑
m=1

cos km = −e�D

3d
(25)

the DLRO parameter can be written as

m2
D = lim

�→∞
1

|�|gD(Q) = eD

3d
− GD Q = (π, . . . , π) (26)

with

GD = lim
�→∞

1

|�|
∑
k �=Q

gD(k)

(
− 1

d

d∑
m=1

cos km

)
. (27)

In order to estimate a lower bound for the right-hand side of equation (26), first, let us
consider a lower bound on eD. Taking the Néel state as a variational state for Hamiltonian (15),
we obtain

−JDeD − JQeQ � −JDS
2d − 1

4JQS
2(2S − 1)2d = −JDd − 1

4JQd. (28)

As we shall see in the next section (see inequality (80)), we have

eD � 4
5eQ (29)

for J < 0, and therefore we obtain

eD � d
(
1 + 1

4α
)(

1 + 5
4α
)−1

(30)

with α = JQ/JD.
Next we estimate an upper bound on GD. As in the KLS method [28], we introduce the

spectral weight function

RD(ω) = 1
2

∑
n

(|〈ψn|S3(k)|ψ0〉|2 + |〈ψn|S3(−k)|ψ0〉|2)δ(ω − en + e0) (31)

where ψn are the energy eigenstates, en are the corresponding eigenvalues and ψ0 is the
nondegenerate ground state of Hamiltonian (15). Then,

gD(k) =
∫ ∞

0
dωRD(ω). (32)

By using the Cauchy–Schwarz inequality, we have

(gD(k))
2 =

(∫ ∞

0
dωRD(ω)

)2

�
∫ ∞

0
dωRD(ω)ω

−1
∫ ∞

0
dωRD(ω)ω. (33)

Noting the relation

〈O2q(x)O
†
2q(y)〉� = e�Q

5d
(34)

the last integral of the right-hand side of inequality (33) is reduced to∫ ∞

0
dωRD(ω)ω = 1

2
〈[[S3(k),H�] , S3(−k)]〉� = 1

d

(
2

3
JDe�D + 2JQe�Q

)
E(k) (35)
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with

E(k) =
d∑

m=1

(1 − cos km). (36)

We shall show later that∫ ∞

0
dωRD(ω)ω

−1 � 1

4JDE(k − Q)
k �= Q. (37)

Therefore, from equation (35) and inequalities (33) and (37), we obtain

gD(k) �
√

E(k)

E(k − Q)

√
e�D

6d
+
e�Q

2d
α. (38)

By using inequalities (29) and (38), GD is bounded from above by

GD =
√
eD

d

(
1

6
+

5

8
α

)
$I(d) (39)

with

$I(d) = 1

(2π)d

∫ π

−π

ddk

√
E(k)

E(k − Q)

{
− 1

d

d∑
m=1

cos km

}
+

(40)

where

{F }+ =
{
F if F � 0

0 otherwise.
(41)

We evaluate numerically

$I(2) = 0.646 . . .

$I(3) = 0.349 . . . .
(42)

From equations (26) and (39) and inequality (30), we obtain

m2
D �

√
eD

d

(
1

3

√
eD

d
−
√(

1

6
+

5

8
α

)
$I(d)

)
(43)

�
√
eD

d

1

3

√(
1 +

1

4
α

)(
1 +

5

4
α

)−1

−
√(

1

6
+

5

8
α

)
$I(d)

 . (44)

Therefore the DLRO parameter takes a strictly positive value if the parameter α satisifies

α < 0.115 d = 2 (45)

α < 0.659 d = 3 (46)

or if the parameters J and J ′ satisfy

J ′ < −0.188J d = 2 (47)

J ′ < −1.954J d = 3. (48)

In the following we shall prove inequality (37). Let us define

T1(x) = U †S1(x)U (49)

T2(x) = U †iS2(x)U (50)

T3(x) = U †S3(x)U (51)
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with U = exp(iπ
∑

x∈�odd
S2(x)), where �odd is a collection of sites x with odd |x|. (For

x = (x1, ..., xd) |x| = ∑d
i=1 |xi |.) Let h(x) be a real-valued function on the sites. Then we

consider the h-dependent Hamiltonian defined by

HD
�(h) = −JD

∑
〈x,y〉

{T1(x)T1(y) + T2(x)T2(y) + (T3(x) − h(x))(T3(y) − h(y))

+ 1
2 [T 2

3 (x) − (T3(x) − h(x))2 + T 2
3 (y) − (T3(y) − h(y))2]}

−JQ

∑
〈x,y〉

2∑
q=−2

O2q(x)O2q(y). (52)

We note that

HD
�(0) = U †H�U. (53)

For HD
�(h) we can easily check the following facts: the matrix elements of all the matrices

appearing in HD
�(h) are real, the coefficients of all the nearest-neighbour dipole–dipole

interaction terms are negative for JD > 0 and those of nearest-neighbour quadrupole–
quadrupole interaction terms are non-positive for JQ � 0. These conditions are required
so as to satisfy reflection positivity. Thus, following the argument of KLS (p 1026 in [28]),
we have

ED
�(h) � ED

�(0) (54)

which leads to

d2

dλ2
ED
�(λh)

∣∣∣
λ=0

� 0 (55)

where ED
�(h) denotes the ground-state energy of HD

�(h). Using inequality (55) and a
second-order perturbation theory for HD

�(λh) with h(x) = cos k · x and sin k · x, we obtain
inequality (37).

4. Quadrupole long-range order

In this section, we prove the existence of QLRO within the region J ′ � 2J > 0 (0 � 4JD/3
< JQ). As in section 3, let us define the Fourier transform of O20(x),

O20(k) = 1√|�|
∑
x∈�

e−ik·xO20(x). (56)

The Fourier-transformed two-point quadrupole correlation function in the ground state is

gQ(k) = 〈O20(k)O20(−k)〉�. (57)

By using gQ(k) and the sum rule

1

|�|
∑
k∈�∗

gQ(k)
1

d

d∑
m=1

cos km = e�Q

5d
(58)

the QLRO parameter is written as

m2
Q = lim

�→∞
1

|�|gQ(0) = eQ

5d
− GQ 0 = (0, . . . , 0) (59)

with

GQ = lim
�→∞

1

|�|
∑
k �=0

gQ(k)
1

d

d∑
m=1

cos km. (60)
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To evaluate a lower bound for the right-hand side of equation (59), we follow a similar
process in section 3. Firstly, we use the variational method to estimate a lower bound for eQ.
Let |0〉x be the eigenstate of S3(x) with the eigenvalue zero. If we take ⊗x∈�|0〉x as a trial
state for Hamiltonian (15), we have

−JDeD − JQeQ � −JQd. (61)

We shall see later that

eD � 4
5eQ (62)

for J > 0 (see inequality (79)), and thus we obtain

eQ � d(1 + 4
5β)

−1 (63)

with β = JD/JQ (β = 1/α).
Secondly, we estimate an upper bound on GQ. We use the spectral weight function

RQ(ω) = 1
2

∑
n

(∣∣〈ψn|O20(k)|ψ0〉
∣∣2 +

∣∣〈ψn|O20(−k)|ψ0〉
∣∣2)δ(ω − en + e0). (64)

By using the Cauchy–Schwarz inequality,

(gQ(k))
2 =

(∫ ∞

0
dωRQ(ω)

)2

�
∫ ∞

0
dωRQ(ω)ω

−1
∫ ∞

0
dωRQ(ω)ω. (65)

The last integral of the right-hand side of equation (65) takes the form∫ ∞

0
dωRQ(ω)ω = 1

2

〈[[
O20(k),H�

]
,O20(−k)

]〉
�

= JD

(
6

5d
e�Q

d∑
m

cos km +
3

2
e�D

)
+ JQ

(
9

8d
e�D

d∑
m

cos km +
9

10
e�Q

)
(66)

where we have used the following commutation relations for S = 1:[
O20(x),O1±1(x)

] = ±
√

3O2±1(x) (67)[
O20(x),O2±1(x)

] = ±3
√

3

4
O1±1(x) (68)[

O20(x),O2±2(x)
] = 0. (69)

We note that these commutation relations hold only in the case of S = 1. An upper bound on
the first integral of the right-hand side of equation (65) can be derived as∫ ∞

0
dωRQ(ω)ω

−1 � 1

4JQE(k)
k �= 0. (70)

To prove inequality (70), we take the h-dependent unitary transformed Hamiltonian,

HQ
�(h) = −JD

∑
〈x,y〉

T (x) · T (y)

−JQ

∑
〈x,y〉

{∑
q �=0

O2q(x)O2q(y) + (O20(x) − h(x))(O20(y) − h(y))

+ 1
2

[
O2

20(x) − (O20(x) − h(x))2 + O2
20(y) − (O20(y) − h(y))2

]}
. (71)

As in the case of HD
�(h), we can easily check that the Hamiltonian HQ

�(h) satisfies reflection
positivity for J ′ � 2J, J ′ > 0. Thus, following the argument of KLS and using the second-
order perturbation theory, we can obtain inequality (70).
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Here we note that inequality (70) holds for k �= 0, while inequality (37) holds for k �= Q.
This is roughly explained as follows. First we note that HD

�(0) = HQ
�(0) = U †H�U and that

the eigenstates ψ̃n of HD
�(0) and HQ

�(0) are related to the eigenstatesψn of H� by ψ̃n = U †ψn.
In the second-order perturbation theory we need to calculate〈

ψ̃n

∣∣∣∣∑
〈x,y〉

(T3(x) − T3(y))(h(x) − h(y))

∣∣∣∣ψ̃0

〉
(72)

in the DLRO case and〈
ψ̃n

∣∣∣∣∑
〈x,y〉

(O20(x) − O20(y))(h(x) − h(y))

∣∣∣∣ψ̃0

〉
(73)

in the QLRO case. Expression (72) is reduced to〈
ψn

∣∣∣∣∑
〈x,y〉

(eiQxS3(x) − eiQxS3(y))(h(x) − h(y))

∣∣∣∣ψ0

〉
(74)

and then the factor eiQx appears; this extra factor leads to the phase shift byQ in inequality (37).
On the other hand, since UO20(x)U

† = O20(x), no extra factor appears in equation (73) and
thus inequality (70) holds for k �= 0.

We turn back to an estimate of an upper bound on GQ. From equation (66) and
inequalities (65) and (70) we obtain

gQ(k) �

√√√√I�1

{
1
d

∑d
m=1 cos km

}
+ I�2

E(k)
(75)

with

I�1 = 9
32e�D + 3

10βe�Q (76)

I�2 = 3
8βe�D + 9

40e�Q. (77)

Then we have

1

|�|
∑
k �=0

gQ(k)
1

d

d∑
m=1

cos km � 1

|�|
∑
k �=0

√√√√I�1

{
1
d

∑d
m=1 cos km

}
+

+ I�2

E(k)

{
1

d

d∑
m=1

cos km

}
+

.

(78)

Noting that RQ(ω) is non-negative, we find that equation (66) is also non-negative. Thus,
the expectation value of double commutator (66) at k = Q leads to

e�D � 4
5e�Q J > 0 (79)

e�D � 4
5e�Q J < 0. (80)

Applying inequality (79) to equations (76) and (77), we have

I�1 �
(

9
40 + 3

10β
)
e�Q (81)

I�2 �
(

9
40 + 3

10β
)
e�Q (82)

for J > 0.
From inequalities (78), (81) and (82), GQ is bounded from above by GQ with

GQ =
√(

9
40 + 3

10β
)
eQ$II(d) (83)
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where

$II(d) = 1

(2π)d

∫ π

−π

ddk

√√√√{
1
d

∑d
m=1 cos km

}
+

+ 1

E(k)

{
1

d

d∑
m=1

cos km

}
+

. (84)

We calculate numerically

$II(2) = 0.457 . . .

$II(3) = 0.202 . . . .
(85)

From equations (59) and (83) and inequality (63), we obtain

m2
Q � √

eQ

(
1

5d
√
eQ −

√
9

40
+

3

10
β$II(d)

)
(86)

� √
eQ

 1

5d

√
d

(
1 +

4

5
β

)−1

−
√

9

40
+

3

10
β$II(d)

 . (87)

Consequently, in three dimensions the QLRO parameter takes a non-zero value for

β < 0.187 (88)

or

J ′ < 2.664J. (89)

In two dimensions there is no region for which we can provem2
Q > 0 from the lower bound (87).

5. Summary and discussions

We have proved that the DLRO or the QLRO parameter takes a finite value under some
conditions. The results are summarized in figure 1. The boundaries J ′ = 2J, J > 0 and
J ′ = 0, J < 0 in figure 1 originate from the condition for reflection positivity. Thus it is
impossible to improve these boundaries within the present method. On the other hand, we
have a chance to improve the other boundaries by estimating better lower bounds on eD and eQ

or better upper bounds on GD and GQ, which lead to improved lower bounds on m2
D and m2

Q.
One candidate for doing so is to find more suitable trial states, which give us lower variational
energies, by which we can obtain bounds on eD and eQ.

It should be noted, however, that in the case of two dimensions we cannot conclude from
inequality (86) the existence of QLRO, even though we find the exact value of eQ. The reason
is as follows. Suppose that the right-hand side of (86) is positive. Then, we have eQ > 4.699.
On the other hand, we have found eQ < 2.578 by the numerical calculation (see appendix A).
This implies the fact that the right-hand side of (86) never takes a positive value.

Within the region J ′ > J > 0, which is thought to be the FQ phase by approximation
methods [14–16, 18–20], we have rigorously established the existence of QLRO in three
dimensions. For the parameter regions where we have proved the existence of QLRO,
following the argument by Kaplan, Horsch and von der Linden [35] (see also [36] and [37]),
we can construct an infinite-volume ground state with explicit symmetry breaking by applying
an infinitesimal symmetry breaking field. Thus our results partially confirm predictions by
approximation methods. In order to show the occurrence of the FQ phase, furthermore, we
need to prove that the expectation value of the dipole moment is vanishing for any infinite-
volume ground states. The recent numerical results of Harada and Kawashima by means of
a quantum Monte Carlo method indicate that there is no dipole moment in the ground state
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J’/J=-0.188
J

J’

(a)

J’/J=
2

J’/J=
-1.954

J’/J=
2.664

J

J’

(b)

Figure 1. The region in which we have established the existence of LRO. (a) The square lattice.
(b) The simple cubic lattice. The DLRO and the QLRO parameters take a non-zero value in the
light-grey and the dark-grey regions, respectively.

for J ′ > J > 0 in two dimensions [21]. They showed that the algorithm for J ′ > J > 0 is
different from that for 0 � J ′ < J where the system is ferromagnetic and also different from
that for J < 0, J ′ � 0 where the system is expected to be antiferromagnetic. They pointed out
that the algorithmic ‘transition’ points J = 0 and J ′ = J can be related to the phase transition
points in real physics. They also pointed out that the algorithmic ‘transition’ points do not
depend on the lattice dimensionality. Therefore we expect the absence of dipole moment for
J ′ > J > 0 in three dimensions. However, the rigorous proof of this is far beyond our scope,
and we leave it as an interesting future problem to be performed.

In the following we shall comment on the case S > 1. In this case, we should consider
Hamiltonian (4) with J and J ′ replaced by J/S2 and J ′/S4. By using the variational
argument [13], we easily find that the ground state is ferromagnetic for 0 < J ′ < SJ . Thus, as
S increases, the ferromagnetic region becomes larger and the FQ phase (if it exists) becomes
smaller in the J–J ′ plane. It should be noted that there is no quadrupole region in the ground
state for J > 0 in the limit S → ∞, and that its existence is caused by quantum effects. We
can also easily check that the system satisfies reflection positivity for J ′ � 2S2J, J ′ � 0.
Thus, the present method is applicable to such a parameter region, provided that the finite-
volume ground state is unique. It is proved that the finite-volume ground state in the region
J ′ < −SJ/2(S − 1), J ′ � 0 is unique [22], and as far as we know there is no rigorous
proof of it in the other region. Under the assumption that the finite-volume ground state in
the region satisfying the reflection positivity is unique, we can obtain the same inequalities
as (37) and (70). Then, following the same method as in section 3, we can prove the existence
of DLRO (see appendix B). On the other hand, in the case of QLRO, difficulties will arise
in calculating an upper bound on the second integral of equation (65); unlike the S = 1 case
in which Racah operators satisfy the commutation relations (67)–(69), an expression of the
expectation value of double commutator (66) takes a complicated form for S > 1. Thus it is
not easy to prove the existence of QLRO in the case of S > 1 by the present method.
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Figure A.1. The eight-site cluster used to derive a bounds on e�Q for the square lattice. The solid
and dotted lines represent full- and half-weight bonds.

Appendix A

In this appendix we numerically estimate an upper bound on e�Q, relying on the computer.
Let �′ be a subset of � including the origin, and define a local Hamiltonian by

hnQ(0) =
∑
x∈�′

hQ(x) (90)

where |�′| = n and

hQ(x) = 1
2

d∑
m=1

2∑
q=−2

O2q(x)
(
O

†
2q(x + δm) + O

†
2q(x − δm)

)
(91)

where δm denotes the unit vector in the m-direction. Then, the whole Hamiltonian is written
as

H�Q = 1

n

∑
x∈�

hnQ(x) (92)

where hnQ(x) is a translated copy of hnQ(0). Thus, by calculating the maximum eigenvalue enQ
of hnQ(x), we can obtain an inequality

e�Q � 1

n
enQ. (93)

Turning now to d = 2, we adopt h2
Q(0), whose support is described in figure A.1. By

using the Householder method, we have calculated all the eigenvalues of h2
Q(0). The result is

e2
Q = 5.154 . . ., which gives us

e�Q � 2.578. (94)

Appendix B

In this appendix we are concerned with the proof of the existence of DLRO in the ground state
of the Hamiltonian

H = − J

S2

∑
〈x,y〉

S(x) · S(y) − J ′

S4

∑
〈x,y〉

(S(x) · S(y))2 (95)
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with S > 1. By using equations (17) and (18), Hamiltonian (95) is written as

H� = J̃DH�D − J̃QH�Q (96)

with

J̃D = − J

S2
+

1

2

J ′

S4
J̃Q = 2

3

J ′

S4
(97)

where we have omitted a constant term.
We can easily see that Hamiltonian (96) satisfies reflection positivity for J̃D � 0, J̃Q � 0

or J � 0, J ′ � 2S2J . We assume that the finite-volume ground state of Hamiltonian (95) in
this region is unique. Under this assumption, we obtain inequality (38) with α replaced by
α̃ = J̃Q/J̃D.

The main difference between the cases of S = 1 and S > 1 arises from the fact that
the commutation relations (67)–(69) do not hold for S > 1; this implies that the last equality
of (66) does not hold, and therefore we cannot obtain inequality (29) for S > 1. Thus in order
to bound eD and GD we need to obtain another bound on eQ instead of inequality (29) in the
case of S > 1. Here we use the Cauchy–Schwarz inequality, and then we obtain

e�Q �
{
S2(S + 1)2 − 3

4S(S + 1)
}
d. (98)

By using inequality (98), (39) is replaced by

GD =
√

1

6d
eD +

α̃

2

{
S2(S + 1)2 − 3

4S(S + 1)
}
$I(d) (99)

and, therefore, a lower bound for the DLRO parameter is evaluated as

m2
D � eD

3d
−
√

1

6d
eD +

α̃

2

{
S2(S + 1)2 − 3

4S(S + 1)
}
$I(d). (100)

Thus we can conclude m2
D > 0 if eD satisfies

eD −
(
a +

√
a2 + α̃b

)
> 0 (101)

where

a = 3
4d$

2
I (d) (102)

b = 9
2d

2
{
S2(S + 1)2 − 3

4S(S + 1)
}
$2

I (d). (103)

Let us estimate a lower bound for eD. Combining inequalities (98) and (28) with JD and JQ

replaced by J̃D and J̃Q, we have

eD � S2d + α̃
( − 3S3 + 3

4S
)
d. (104)

Thus the left-hand side of inequality (101) is bounded from below as

eD −
(
a +

√
a2 + α̃b

)
� S2d + α̃

( − 3S3 + 3
4S
)
d − (

a +
√
a2 + α̃b

)
. (105)

Therefore we obtain the region for which we can prove m2
D > 0 as follows:

0 � J ′ < − 6c

4 − 3c
S2J (106)

with

c = 4S2(2S + 1) + 3$2
I (d)(2S

2 + 3S + 2)

3S(2S − 1)(2S + 1)2

−
√

9$4
I (d)(2S

2 + 3S + 2)2 + 24S2$2
I (d)(4S

3 + 12S2 + 11S + 3)

3S(2S − 1)(2S + 1)2
. (107)

The results for some values of S are listed in table B.1.
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Table B.1. The region in which we have proved the existence of DLRO within the region J < 0
and J ′ � 0.

S Square lattice Simple cubic lattice

3/2 J ′ < −0.259J J ′ < −0.514J
2 J ′ < −0.452J J ′ < −0.731J
5/2 J ′ < −0.650J J ′ < −0.952J
3 J ′ < −0.853J J ′ < −1.176J
∞ J ′ < ∞ J ′ < ∞
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